
Cloudera, Inc., the enterprise data cloud company, announced that more than half of the 30 largest banks in Asia Pacific (excluding state-owned banks in China) have chosen Cloudera to enhance their data strategy to accelerate digital transformation, improve customer experiences, and meet regulatory and compliance requirements.
Cloudera also counts eight of the top 10 largest banks in Southeast Asia1 as customers.
With 75% of companies2 in the Asia Pacific region falling victim to financial crime over the past 12 months, the pressure is on for financial institutions to rely on data, analytics, machine learning and AI technologies to capitalize on the information needed to combat financial crime. Given the complexity and variety of financial and sensitive customer data, many financial institutions have also transitioned to Cloudera’s cloud-agnostic platform that is optimized for the scale and complexity of the data that the industry demands.
“Financial crime is one of the greatest challenges for banks as it not only causes monetary losses but also adversely affects reputation and customer relationships,” said Mark Micallef, Vice President of Asia Pacific and Japan, Cloudera. “Criminal networks are becoming increasingly creative and ready to exploit any opportunity inside or around the edges of business operations. As the need to overcome the siloed and overwhelming data landscape increases, financial services institutions have to adopt innovative approaches to better leverage data and analytics and protect themselves from known and unknown threats, while keeping up with regulatory changes. We are proud to be chosen by top banks in the region to help them make insights-driven decisions to secure their organizations as they grow.”
Bank Rakyat Indonesia
PT Bank Rakyat Indonesia (Persero) Tbk (BRI) is one of the largest state-owned banks in Indonesia which engages in the provision of general banking services. It built a big data platform that is powered by Cloudera Enterprise to analyze the massive amount of customer data it gained over the years. This enabled it to analyze five years’ worth of historical data and use the derived insights to drive more sales through targeted cross-selling and upselling.
BRI also used Cloudera Data Science Workbench to develop a machine learning model for fraud detection. The new system will process and detect fraud in real time by highlighting anomalies found in the stream of events coming from multiple customer touchpoints such as ATMs and internet banking portals.
“As customers are changing the way they bank and given the sophisticated nature of fraud, banks need to leverage data and take a new approach to grow and protect their business,” said Indra Utoyo, Director of IT and Operations, BRI. “Cloudera’s scalable, secure, and compliant platform allows us to gain a comprehensive view of customers, enabling us to continually address their ever-changing demands as well as offer services to the underserved in Indonesia. The new platform also enables the use of machine learning to enhance our fraud detection capability, which will help address the mounting concerns around data security.”


Archive
- April 2021(33)
- March 2021(79)
- February 2021(58)
- January 2021(55)
- December 2020(56)
- November 2020(59)
- October 2020(78)
- September 2020(72)
- August 2020(64)
- July 2020(71)
- June 2020(74)
- May 2020(50)
- April 2020(71)
- March 2020(71)
- February 2020(58)
- January 2020(62)
- December 2019(57)
- November 2019(64)
- October 2019(25)
- September 2019(24)
- August 2019(14)
- July 2019(23)
- June 2019(54)
- May 2019(82)
- April 2019(76)
- March 2019(71)
- February 2019(67)
- January 2019(75)
- December 2018(44)
- November 2018(47)
- October 2018(74)
- September 2018(54)
- August 2018(61)
- July 2018(72)
- June 2018(62)
- May 2018(62)
- April 2018(73)
- March 2018(76)
- February 2018(8)
- January 2018(7)
- December 2017(6)
- November 2017(8)
- October 2017(3)
- September 2017(4)
- August 2017(4)
- July 2017(2)
- June 2017(5)
- May 2017(6)
- April 2017(11)
- March 2017(8)
- February 2017(16)
- January 2017(10)
- December 2016(12)
- November 2016(20)
- October 2016(7)
- September 2016(102)
- August 2016(168)
- July 2016(141)
- June 2016(149)
- May 2016(117)
- April 2016(59)
- March 2016(85)
- February 2016(153)
- December 2015(150)